Université de Bretagne Occidentale UFR Sciences et Techniques LICENCE 2 MIASHS

Espaces euclidiens

Examen terminal, le 18 décembre 2024, 10h45-12h45

Documents et calculatrices sont interdits.

Exercice 1. Soit

$$A = \left(\begin{array}{ccc} 0 & 2 & 2 \\ 2 & 1 & 0 \\ 2 & 0 & -1 \end{array}\right).$$

- a. Dire pourquoi A est diagonalisable sur $\mathbb R$ sans faire de calcul.
- b. Déterminer le polynôme caractéristique de A.
- c. Déterminer les valeurs propres de A.
- d. Donner une matrice inversible P telle que $P^{-1}AP$ soit diagonale.
- e. Vérifier qu'il existe une matrice orthogonale P telle que $P^{-1}AP$ soit diagonale.

Exercice 2. Soit Q la forme quadratique sur \mathbb{R}^4 définie par

$$Q(w, x, y, z) = wx + wy + wz + xy + xz + 2yz.$$

Soit A la matrice de la forme bilinéaire symétrique Φ associée à Q.

- a. Donner A.
- b. Diagonaliser Q par la méthode de Gauss.
- c. Quelle est la signature de Q?
- d. Déterminer une matrice 4×4 inversible P telle que tPAP soit diagonale avec tous les coefficients diagonaux égaux à ± 1 .
- e. Vérifier en effectuant le calcul que tPAP est bien une matrice diagonale avec tous les coefficients diagonaux égaux à ± 1 .

Barème indicatif sur 20 points:

Exercice 1	10 pts
Exercice 2	10 pts